If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6=99
We move all terms to the left:
x^2+6-(99)=0
We add all the numbers together, and all the variables
x^2-93=0
a = 1; b = 0; c = -93;
Δ = b2-4ac
Δ = 02-4·1·(-93)
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{93}}{2*1}=\frac{0-2\sqrt{93}}{2} =-\frac{2\sqrt{93}}{2} =-\sqrt{93} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{93}}{2*1}=\frac{0+2\sqrt{93}}{2} =\frac{2\sqrt{93}}{2} =\sqrt{93} $
| 0=2p+3p | | j+2=3j−10 | | -8-4=7x+8-6x | | 3w-2=-9w+8+7w | | 7(1+7r)=-37+5r | | 0=-5k-3k | | 3w−2=-9w+8+7w | | -24-(-41)=x/9 | | 8+j=-5j-10 | | 3x2+2x+16=0 | | 8+j=-5j−10 | | -4f-8=-3f | | -4f-8=3f | | 3y-10=76 | | 6r+3=5+7r | | 20-9x=11x | | -9+6u=9u | | -9v+10=6v-5 | | 3y+-10=76 | | -2h=-6−h | | 10+2d=d | | 4-2b=44 | | 6f=5f+4 | | 36+b=75 | | X2+y2-8-20=0 | | 10(6c-1)-18=58c+10 | | 2(5x+5)−2x+4=70 | | 4(4x+4)+2x+3=−161−161 | | 4(4x+4)+2x+3= −161−161 | | 30=w(w^2-7) | | 8=b-+8b | | 2w^2−16w=12w−48 |